Monatshefte für Chemie 110, 525-529 (1979)

Monatshefte für Chemie

© by Springer-Verlag 1979

Ramanspektroskopische Untersuchungen an Seleninyldibromid

Wolfgang Brockner* und A. Feza Demiray

Anorganisch-Chemisches Institut, Technische Universität Clausthal, D-3392 Clausthal-Zellerfeld, Bundesrepublik Deutschland

(Eingegangen 18. Oktober 1978. Angenommen 10. November 1978)

Raman Spectra of Solid and Molten SeOBr₂

The *Raman* spectra of solid and molten $SeOBr_2$ as well as of a CCl_4 solution have been recorded for the first time. The spectra indicate associated molecules in the molten state and relatively strong intermolecular interactions in the solid. Monomeric pyramidal molecules are present in the CCl_4 solution. An assignment will be discussed in analogy to $SeOCl_2$.

(Keywords: Raman spectra; SeOBr₂)

Einleitung

In einer Reihe von Arbeiten¹⁻⁴ wurden von uns in den letzten Jahren Oxidhalogenide unter den verschiedensten Aspekten untersucht. Im wesentlichen interessieren dabei die Strukturen im festen und flüssigen Zustand, aber auch das reaktive Verhalten einiger Oxidhalogenide. Speziell SeOCl₂ wäre hier zu nennen, das zum einen sauerstoffübertragend wirkt, wie beispielsweise bei

 $2 \operatorname{SeOCl}_2 + \operatorname{SiCl}_4 \rightleftharpoons \operatorname{SiO}_2 + 2 \operatorname{SeCl}_4 (\operatorname{Lit}_5),$

und zum anderen in Additionsverbindungen (z. B. mit SbCl₅⁶ und SnCl₄⁵) als Elektronendonor fungiert.

Vom SeOBr₂ und seinem chemischen Verhalten ist nur wenig bekannt. Seine physikalischen Eigenschaften [Flüssigkeitsbereich: 175,5 °C⁷, Dichte (50 °C): 3,38 g/cm^{3,8}] lassen auf Analogien zum SeOCl₂ schließen. Hier soll nun der Versuch unternommen werden, mit Hilfe der Ramanspektroskopie Informationen über die Struktur des $SeOBr_2$ im geschmolzenen und kristallinen Zustand zu erhalten.

Abb. 1. Ramanspektren des SeOBr₂ im festen Zustand und in der Schmelze.
Spektrograph — Coderg — PH 1 mit Photomultiplier EMI 9558 A, Erregerlicht — Rubinpulslaser, 6943 Å, Registriergeschwindigkeit — 50 cm⁻¹/min, Papiervorschub — 30 mm/min. a und b Flüssiges SeOBr₂ bei 100 °C und 50 °C, Zeitkonstante 3 s, Spaltbreite 6 cm⁻¹, c Festes SeOBr₂ bei — 196 °C, Zeitkonstante 1,5 s, Spaltbreite 4 cm⁻¹

Experimentelles

Die Darstellung des SeOBr₂ erfolgte nach Lehner⁹ aus frisch sublimiertem SeO₂ (p. A. Merck), Se (p. A. Merck) und Brom. Zur Aufnahme der Ramanspektren wurden die entstandenen gelblichbraunen Kristallnadeln (Fp. ~ 41 °C) aus CCl₄ umkristallisiert, wobei etwas hellere Kristalle erhalten wurden. Das gereinigte Produkt wurde unter Luft- und Feuchtigkeitsausschluß in eine Ramanküvette überführt und diese unter Kühlung mit fl. N₂ abgeschmolzen.

Die Ramanspektren wurden mit einem Coderg-PH 1-Ramanspektrographen und Rubinpulslaseranregung aufgenommen. Eine eingehende Beschreibung des Spektrographen und der modifizierten Probenanordnung wurde bereits an

fest 196 °C	flüssig 50 °C	flüssig 100 °C	27~%ige Lsg. in ${ m CCl}_4, { m RT}$	$\frac{\text{CCl}_4^4}{\text{RT}}$
			965 vw	
		$938\mathrm{m}$		
0.0.0	$933\mathrm{m}$			
922 w				
905 w	005			
880 m	885 W		-0~	704
			795 m	791
			766 m	762
	919*		4038	459
200 ~	318 W*		319 s	325
309 S		000 × 1×+	007	
290 ms	979 a. ah	282 S, DI	287 m, sn	
2198	218 S, SH			
955 g	2008,80			
200 s 947 w				
238 vs			,	
200 43		994 s	999 a	917
2128	215 8	2245	222 3	211
	2105	200 m		
	196 m sh	200 m		
	158 w			
145 w				
115 sh				
111 ms				
97 w	00	105 s	101 m	
83 w	92 s			
67 w				
$56\mathrm{w,sh}$				
$50\mathrm{w}$				

Tabelle 1. Ramanfrequenzen des festen und flüssigen SeOBr₂ und der 27 % igen SeOBr₂-Lösung in CCl₄; (s = strong, m = medium, w = weak, sh = shoulder)

* CCl_4 und/oder Br_2 ?

anderer Stelle veröffentlicht^{10, 11}. Die Aufnahmen der Schmelzen wurden durch Registrierung der *Raman*strahlung senkrecht und die des Feststoffes bei -196 °C entgegengesetzt zur Einstrahlrichtung des Rubinlaserlichtes erhalten.

Ergebnisse

Diskussion

Obwohl von den Seleninyldihalogeniden SeOF₂ und SeOCl₂ verschiedene schwingungsspektroskopische Untersuchungen^{4, 12–14} und Schwingungsberechnungen¹⁵ vorliegen, ist vom homologen SeOBr₂ bisher nur wenig bekannt. Es kann jedoch davon ausgegangen werden, daß die SeOBr₂-Molekel (z. B. in CCl₄-Lösungen und in der Gasphase) ebenso wie SeOF₂, SOCl₂ und SeOCl₂^{4, 12–15} pyramidal (C_s-Symmetrie) aufgebaut ist. Für solche Moleküle werden 6 Eigenschwingungen in den Rassen 4A' + 2A'' erwartet, die sowohl ultrarot- als auch Raman-aktiv sind.

Unsere erhaltenen Ramanspektren des geschmolzenen SeOBr₂, sowie deren Vergleich mit denen des flüssigen SeOCl₂⁴, sind mit der Annahme einer pyramidalen Molekülstruktur im Einklang. Ebenso wie beim SeOCl₂⁴ tritt beim SeOBr₂ bei Temperaturerhöhung eine Verschiebung der symmetrischen Se—O-Valenzfrequenz nach höheren Frequenzwerten [ν_1 (50 °C) = 933 und 885 cm⁻¹, ν_1 (100 °C) = 938 cm⁻¹] auf, zugleich wird die andeutungsweise zu beobachtende Aufspaltung dieser Linie aufgehoben. In einer 27 %igen Lösung von SeOBr₂ in CCl₄ schließlich wird die Se—O-Valenzfrequenz bei 965 cm⁻¹ registriert. Ramanspektren der Gasphase konnten wegen der Zersetzung des SeOBr₂ nicht erhalten werden.

Dieses Verhalten kann in Analogie zum SeOCl_2^4 interpretiert werden:

In verdünnten SeOBr₂-Lösungen liegen danach isolierte Moleküle mit pyramidaler Struktur vor. In der Schmelze tritt eine Wechselwirkung benachbarter Moleküle ein, wobei das Selenatom als Elektronenacceptor und das Sauerstoffatom des benachbarten SeOBr₂ als Elektronendonator fungieren. Diese intermolekulare Wechselwirkung wird mit Temperaturerniedrigung stärker, um letztlich im festen Zustand zu einer wahrscheinlichen Struktur (mit wenigstens 2 Molekülen in der Elementarzelle) der Art

zu führen, in der die bevorzugte sp³-Hybridisierung des Selens beibehalten wird.

Vom SeOF₂ wurde kürzlich eine Röntgenstrukturbestimmung von

Dewan und Edwards¹⁶ veröffentlicht, in der allerdings neben der Se—O...Se-Wechselwirkung auch F-Brückenbindungen angegeben werden, obwohl beide Se—F-Abstände praktisch gleich lang sind. Eine dem SeOF₂ analoge Struktur des SeOBr₂ ist mit unseren Ramanspektroskopischen Ergebnissen nicht vereinbar.

Eine letztlich verbindliche Zuordnung des SeOBr₂-Ramanspektrums kann nur auf der Basis einer Kristallstrukturbestimmung, die bisher jedoch nicht vorliegt, getroffen werden.

Additionsverbindungen des SeOBr₂, wie sie vom SeOCl₂ bekannt sind^{4-6,17}, konnten noch nicht dargestellt werden. Es ist jedoch zu erwarten, daß ähnliche Verhältnisse wie beim SeOCl₂ vorliegen. In einem solchen SeOBr₂-Addukt wird die Se—O-Valenzfrequenz bei wesentlich tieferen Wellenzahlen zu erwarten sein als in dem reinen Feststoff, in dem zwar eine beträchtliche Se=O...Se-Wechselwirkung benachbarter Moleküle vorhanden ist, die aber noch lange nicht die Größenordnung von kovalenten Bindungen erreicht.

Versuche zur Darstellung von SeOBr₂-Additionsverbindungen mit geeigneten Bromiden sind im Gange.

Dank

Herrn Prof. Dr. W. Bues möchten wir für sein stetiges förderndes Interesse danken. Außerdem danken wir der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für finanzielle Unterstützung. Herrn D. Grünewald sei für die sorgfältige Aufnahme der Ramanspektren gedankt.

Literatur

- ¹ W. Bues, W. Brockner und F. Demiray, Spectrochim. Acta 30 A, 579 (1974).
- ² W. Brockner, H. Hovdan und S. J. Cyvin, Z. Naturforsch. 29 a, 620 (1974).
- ³ A. F. Demiray und W. Brockner, Mh. Chem. 107, 433 (1976).
- ⁴ W. Bues, W. Brockner und F. Demiray, Z. anorg. allg. Chem. 434, 249 (1977).
- ⁵ J. C. Sheldon und S. Y. Tyree, jr., J. Amer. Chem. Soc. 81, 2290 (1959).
- ⁶ Y. Hermodsson, Acta Chem. Scand. 21, 1313 (1967).
- ⁷ D'Ans-Lax, Taschenbuch f
 ür Chemiker und Physiker, Band I, S. 1-530. Berlin-Heidelberg-New York: Springer. 1967.
- ⁸ Gmelins Handbuch, Selen B, S. 153ff. Clausthal-Zellerfeld: Gmelin-Verlag. 1949.
- ⁹ V. Lehner, J. Amer. Chem. Soc. 44, 1668 (1922).
- ¹⁰ W. Bues, W. Brockner und D. Grünewald, Spectrochim. Acta 28A, 1519 (1972).
- ¹¹ H. A. Øye und W. Bues, Inorg. Nucl. Chem. Letters 8, 31 (1972).
- ¹² L. E. Alexander und I. R. Beattie, J. Chem. Soc. Dalton Trans. 1972, 1745.
- ¹³ H. Gerding, E. Smit und R. Westrik, Rec. Trav. Chim. Pays-Bas **60**, 513 (1941).
- ¹⁴ R. Paetzold, Z. Chem. 4, 272 (1964).
- ¹⁵ R. A. Suthers und T. Henshall, Z. anorg. allg. Chem. 388, 269 (1972).
- ¹⁶ J. C. Dewan und A. J. Edwards, J. Chem. Soc. Dalton Trans. 1976, 2433.
- ¹⁷ Y. Hermodsson, Ark. Kemi **31**, 199 (1969).